A Flexible Approach
to Interactive Runtime Inspection

Eric Tanter!:2 and Peter Ebraert!

! University of Chile, DCC/CWR
Avenida Blanco Encalada 2120, Santiago, Chile
2 OBASCO project, Ecole des Mines de Nantes — INRIA
Rue Alfred Kastler, Nantes, France
Eric.Tanter@emn.fr Peter .Ebraert@vub.ac.be

Abstract. Behavioral reflection is well-known approach enabling ex-
haustive querying of program state (introspection) as well as control-
ling its execution (intercession). It is hence an adequate foundation for
runtime inspection. Partial behavioral reflection aims at making behav-
ioral reflection more applicable by providing high levels of selectivity and
configurability. We first outline the main features of partial behavioral
reflection and of Reflex—our portable Java implementation. We then
sketch how we plan to apply such an approach to provide an interactive
environment for runtime inspection, which, in particular, could be used
to assist in reflective and aspect-oriented programming.

1 Partial Behavioral Reflection for Java

1.1 Reflection and Behavioral Reflection

Reflection in programming languages is a paradigm that has emerged from
the studies of Brian Smith around the foundations of consciousness and self-
references, and his work around the application of these concepts to computer
science, down to the implementation of a reflective Lisp dialect [1]. These ideas
were then applied to various programming paradigms, including object-oriented
programming [2] and had a major impact on languages such as CLOS [3] and
Smalltalk [4]. In an object-oriented language, reflection is provided through a
MetaObject Protocol (MOP), which is an object-oriented “interface” to the lan-
guage implementation [3].

The basic property of reflection is to support metacomputations, that is,
computations about computations. This is done by separating metacomputa-
tions and base computations into two different levels, the metalevel and the base
level. These levels are causally connected. This means that, on the one hand, a
reflective program running at the base level has access to its representation at the
metalevel, and that, on the other hand, a modification of this representation will
affect further base computations. Depending on which part of the representation
is accessed, the part describing the (static) structure of the program, or the part
describing its (dynamic) behavior, reflection is said to be structural or behavioral.



Another distinction is made between introspection, when the representation is
simply read, and intercession, when the representation is modified.

One of the main strengths of behavioral reflection is to provide the means to
achieve a clean separation of concerns including dynamic concerns, and hence
to offer a modular support for adaptation in software systems [5, [6].

Since behavioral reflection enables exhaustive querying of program state (in-
trospection) as well as controlling its execution (intercession), we believe it is an
adequate foundation for runtime inspection. Our focus is reflection-based rather
than AOP-based (like in [7]) because we feel behavioral reflection is the essence
of generic runtime AOP approaches. The major point of AOP, to us, lies in
the definition of Aspect-Specific Languages (ASLs) on top of generic (possibly
reflective) infrastructures (see for instance the work of [8]). We therefore start
by presenting partial behavioral reflection and Reflex, before sketching how we
plan to apply our approach to create an interactive runtime inspection environ-
ment. We are particularly interested in applying such an environment to help
programmers develop/debug their “metalevels”.

1.2 Partial Behavioral Reflection

Bringing behavioral reflection into a language such as Java raises new challenges,
compared to languages like Smalltalk. Indeed, Java only provides very limited
reflective facilities!| and, in order to reduce runtime errors and take into account
security requirements, is much more static in nature. As a result, the overhead
due to the additional layer necessary to get behavioral reflection increases signif-
icantly. Selecting where and when to apply reflection becomes mandatory. This
is called partial reflection |9]. Partial reflection makes it possible to balance the
effects of compilation—which embeds a set of assumptions (a specialization), and
reflection—which retracts some of these assumptions (a generalization).

The starting point of our proposal is the following: the metalevel is struc-
tured in terms of metaobjects reasoning and acting upon reifications of the base
level computation described in terms of operations (e.g., message send/receive,
field access, cast, object creation, serialization, etc.). Reifications are object rep-
resentations of base-level operation occurrences (also known as execution points)
which metaobjects can manipulate (Fig. [1).

We are developping an extensive approach to partial behavioral reflection
that relies on avoiding useless reifications. To this end, high flexibility in speci-
fying reflective needs is required. Our approach is based on spatial and temporal
selection of reification [10]. Spatial selection refers to the possibility of precisely
specifying what, in an application, should be reified (which operation occur-
rences, in which objects/classes). Temporal selection refers to the possibility of
specifying when, during an application’s lifetime, particular reifications effec-
tively occur. The related ideas and techniques would be applicable to a wide
range of object-oriented languages, although we focus on the Java language.

! The standard Java reflection API mainly provides structural introspection. Since the
JDK 1.3, the Dynamic Proxies provide a restricted kind of behavioral intercession
based on interception objects.



meta—entities _ _ _
metaobject

N
RN

reification ()

(of operation occurrence)

control flow

~base entity
(object/class)

\

\
hook
(on operation occurrence)

Fig. 1. Behavioral reflection with metaobjects

1.3 Reflex

Reflex is an open runtime metaobject protocol (MOP) for Java supporting par-
tial behavioral reflection with a high level of configurability, selectivity and flex-
ibility.

Hooks and Hooksets. Reflex is based on the notions of hooks and hooksets,
which are similar to the AOP notions of join points and pointcuts. A hook is a
piece of code inserted to reify a particular operation occurrence, while a hookset
is a set of related hooked execution points. The Reflex core framework in itself
does not support any operation, but rather, Reflex reification capabilities are ex-
tended by providing reification components for desired operations. The standard
Reflex library includes a comprehensive set of such components. Hooksets can
gather execution points located in distinct entities, thus making it a convenient
way to handle crosscutting concerns.

Reflex offers an expressive framework for defining hooksets declaratively.
Users can define hooksets and associate metaobjects to them either statically,
using configuration files, or dynamically, through a runtime API. The flexibility
of the framework allows for specification of various attributes regarding hooksets
and metaobjects, in particular:

— several hooksets may intervene within a given object/class

— several hooksets acting at the same execution point may be composed

— metaobjects can be object-, class- or hookset-specific (i.e., customizable
scope).

— metaobjects may intervene before and/or after base operation occurrences, or
may be more powerful and completely replace the semantics of base operation
occurrences (i.e., customizable metaobject control). Well-defined operation-
and control-specific metaobject interfaces are provided.

— hooksets can have a dynamic activation condition attached to them, to con-
trol their activation/deactivation. Such activation condition can depend on



both base-level and metalevel data. This makes it possible to reason on con-
trol flow (similar to cflow in AspectJ [11]) or sequences of events (like in
EAOP [12]) to determine dynamically if a given hookset should be active or
not.

Figure[2 illustrates our model of hooksets and metaobjects, which is similar
to event-condition-action models. In our case, event sources (hooks) can be ac-
tivated /deactivated as needed, activation condition are dynamically evaluated
and can be changed at any time, and actions (taken by metaobjects) can be
adapted and composed dynamically too.

O metaobject

J ~ 7 activation condition

% hook (execution point)

< 5 hookset

— metalink

Fig. 2. The model of hooksets and metaobjects.
In this example, three hooksets (two of which are activatable) are represented
with their associated metaobjects.

Implementation approach. Our implementation approach is based on the
idea of maximizing flexibility and dynamicity while preserving portability, which
we consider a major advantage of Java. Hence we do not extend or modify the
Java Virtual Machine but instead Reflex is a standard Java library using load-
time instrumentation for inserting hooks. The Java Platform Debugger Archi-
tecture (JPDA) [13] also represents an attractive medium to implement runtime
inspection but, at present, it seems far from being a state-of-the-art environment,
in particular due to its restricted expressivity: few language events are supported
(method entry/exit, field access and exception) compared to the more compre-
hensive expressivity that can be obtained using bytecode transformation (e.g.,
cast, object creation, serialization).

Our approach has the disadvantage that once a class is loaded, new hooks
cannot be inserted into it2. However, as mentionned above, we provide activat-
able hooks, which have an almost negligible cost when deactivated (preliminary

2 Although this limitation could be overcome using hot swapping of classes.



benchmarks can be found in [10]). It is hence possible to systematically in-
stall deactivated hooks in places of potential interest, knowing that these hooks
can be activated later on. Hence, dynamicity is constrained, but adjustable, and
portability is preserved.

2 Towards an Interactive Environment for Runtime
Inspection

2.1 Requirements for runtime inspection

An interactive environment for runtime inspection has several requirements re-
lated to software visualization issues [14]. Although the core of this position pa-
per is not about visualization itself (these aspects would require more research),
we believe at least two important issues deserve early consideration: visual load,
and synchronization.

As soon as we are interested in realistic applications, a tough issue in visu-
alization is the control of the wvisual load, that is, the possibility to ensure that
not too much information is displayed at a given time, so that the user cognitive
charge is not excessive and the user can avoid getting lost. A user should be able
to select what exactly is of interest to him and possibly be given the chance to
adjust the visualization layout. Another important requirement deals with the
synchronization between the executing application and the inspection environ-
ment. Our approach is based on a synchronous means of control [7]. The idea
here is to provide the user with a feeling of direct interaction with the running
application, offering the possibility to suspend execution, to adjust settings or
interact with the application, before resuming execution. To sum up, it seems
fundamental to provide a very fine-grained control over what is inspected, along
with a high-level of interactivity.

2.2 Approach to Application Inspection

According to the above-mentioned requirements, we are convinced that our ap-
proach to partial behavioral reflection is particularly well-suited to provide an
interactive environment for runtime inspection. In order to back up that state-
ment, we are developping a first monitoring tool that uses Reflex for allowing
runtime inspection.

First of all, to specify which parts of a base application a user wants to
monitor, Reflex configuration files are used to define hooksets. In addition to this
static configuration, the runtime API of Reflex can be used to control hookset
activation. This makes it possible for the user to precisely control, down to the
finest granularity level, which parts of the system and which particular execution
points will be observed/manipulated and when. For instance, a user can specify
that monitoring a given part of the system becomes interesting whenever some
dynamically-evaluated activation condition holds.

Visually, the user gets confronted with a multi-window system where a small
control window is attached to every hookset (a GUI metaobject is associated



Interactive Environment for RTI

> 0o

Base level

@ GUI metaobject
- - link to interaction window

Fig. 3. Schema of the interactive environment.

to each hookset). This permits the visualization layout to be customized (e.g.
windows can be minimized, resized, closed and moved). At present, a control
window simply offers terminal-like output and basic interaction features:

— inspection of reified operations with a notion of timeline: to indeed introspect
the base application execution,

— custom speed execution of the base application: to control the amount of
information presented to the user per time unit, and

— fine-grained control over hookset activation conditions: to limit the set of
displayed events.

For each hookset, a window is created, responsible for the monitoring of its
operations. Depending on the hookset scope, different types of windows are used:

— For a hookset-scope hookset, the window is a simple hookset-scope window
that monitors all operations affected by the hookset.

— For a class-scope hookset, the hookset window contains a class-scope win-
dow for each of the classes affected by that hookset. Each class window
monitors the operations related to the considered hookset occurring within
its instances.

— For an object-scope hookset, the hookset window also contains a class-scope
window for each of the classes affected by that hookset. But in this case,
each class window contains an object-scope window monitoring only the
operations related to the considered hookset occurring within a particular
instance.

Closing a window on a certain level closes all its nested windows and stops
the monitoring of that hookset, class or object. This allows visual load to be
limited as the user can really select what he wants to monitor. Figure [3] shows
how the interface looks like. Obviously, further versions could illustrate program
dynamics in a more elaborated fashion.



Synchronization between the user and the running application is made at
each entry to the metalevel. Whenever a reification occurs, the interactive envi-
ronment can synchronize with the running application. For instance, if the user
asks to suspend the program execution, this suspension will take effect upon
the next entrance to the metalevel. Customizing the base application execution
speed is also managed this way.

2.3 Perspectives for Concerns Inspection

Reflex is a general tool for supporting separation of concerns (SOC) through be-
havioral reflection. Indeed, it can serve as a generic platform for aspect-oriented
development as argued in [10]. In such a case, an application runs at the base
level while crosscutting and/or non-functional concerns are implemented modu-
larly as metalevel entities (SOC metaobjects).

S

1

Meta—-metalevel g
A\

o
<
@
£
S
S
o
x
2
=
})
o

Metalevel Jx \/

Base level

@ GUI metaobject - - link to interaction window

& soC metaobject ~ = manipulation of metalevel

Fig. 4. Applying the interactive environment to inspect a concern metalevel.

In order to help in the prototyping, development, and debugging of such a
concern metalevel, our approach to runtime inspection could provide a valuable
support. In such a scenario, the inspection environment actually runs at the
meta-metalevel, allowing for the manipulation of the metalevel (Fig4). The in-
teraction with the runtime API of Reflex would then be much more powerful
than in standard application inspection, since it would not simply include hook-
set activation and basic synchronization features, but would also provide the
means to dynamically change the bindings between base execution points and
SOC metaobjects.



Note that plugging a metalevel on top of an existing metalevel does not raise
any problem since metaobjects are implemented with standard Java classes, and
are thus also subject to selective reification.

3 Conclusion

In this paper we first briefly presented partial behavioral reflection and its
portable implementation in Java, Reflex. We have highlighted how hooksets pro-
vide a customizable means to conceptually group execution points of interest,
and manipulate, possibly dynamically, the metaobjects associated with them.
Hooksets may also be subject to dynamically-evaluated activation conditions. We
have then explained why we consider that this approach is a convenient way to
provide an interactive environment for runtime inspection and we have sketched
how we have started to explore in this direction. Finally, the recursivity of the
model of behavioral reflection makes it possible to apply such a graphical tool
to inspect a metalevel layer implementing crosscutting and/or non-functional
concerns. This would certainly prove highly useful in assisting the prototyping,
development and debugging of applications making use of runtime SOC.

Acknowledgements

This work is partially funded by Millenium Nucleous Center for Web Research,
Grant P01-029-F, Mideplan, Chile.

References

[1] Smith, B.C.: Reflection and Semantics in Lisp. In: Proceedings of the 14th Annual
ACM Symposium on Principles of Programming Languages. (1984) 23-35

[2] Maes, P.: Computional Reflection. PhD thesis, Artificial intelligence laboratory,
Vrije Universiteit, Brussels, Belgium (1987)

[3] Kiczales, G., Des Rivires, J., Bobrow, D.: The Art of the Meta-Object Protocol.
MIT Press (1991)

[4] Rivard, F.: Smalltalk: a Reflective Language. In: Reflection’96. (1996)

[5] Blair, G.S., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa, F., Duran, H.,
Parlavantzas, N., Saikoski, K.: A Principled Approach to Supporting Adaptation
in Distributed Mobile Environments. In: Int. Symposium on Software Engineering
for Parallel and Distributed Systems (PDSE’2000). (2000)

[6] Redmond, B., Cahill, V.: Supporting Unanticipated Dynamic Adaptation of Ap-
plication Behavior. In: Proceedings of ECOOP 2002. Volume 2374 of Lecture
Notes in Computer Science., Mélaga, Spain, Springer-Verlag (2002) 205-230

[7] Mehner, K., Rashid, A.: Towards a Standard Interface for Runtime Inspection
in AOP Environments. In: Workshop on Tools for Aspect-Oriented Software
Development at OOPSLA 2002. (2002)

[8] Brichau, J., Mens, K., De Volder, K.: Building Composable Aspect-specific Lan-
guages. [15]



[9]

[10]
[11]
[12]
[13]
[14]

[15]

Ibrahim, M.H.: Report of the Workshop on Reflection and Metalevel Architectures
in Object-Oriented Programming. In: OOPSLA/ECOOP’90, Ottawa, Canada
(1990)

Tanter, E., Noyé, J., Caromel, D., Cointe, P.: Partial Behavioral Reflection: Spa-
tial and Temporal Selection of Reification. To Appear at OOPSLA 2003 (2003)
Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An
Overview of AspectJ. Proceedings of ECOOP 2001 (2001)

Douence, R., Fradet, P., Siiddholt, M.: A Framework for the Detection and Reso-
lution of Aspect Interactions. [15]

Sun Microsystems, I.: The Java Platform Debugging Architecture.
http://java.sun.com/products/jpda (2001)

Stasko, J., Domingue, J., M.H., B., Price, B.e.: Software Visualization. The MIT
Press (1998)

Batory, D., Consel, C., Taha, W., eds. In Batory, D., Consel, C., Taha, W.,
eds.: Proceedings of the 1st ACM SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering (GPCE 2002). Volume 2487 of Lecture
Notes in Computer Science., Pittsburgh, PA, USA, Springer-Verlag (2002)



	A Flexible Approach to Interactive Runtime Inspection
	Éric Tanter and Peter Ebraert

