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Abstract

Currently, no programming language support exists for
dynamic software evolution. Additional effort is required
from developers to compensate for this lack of support. In
this paper we analyze and categorize the most important
aspects a programming language should offer in order to
adequately support dynamic software evolution. We subse-
quently analyze the suitability of existing programming lan-
guages for dynamic software evolution. Their type system
is taken as a distinguishing characteristic and the impact of
the type system on many different aspects of dynamic soft-
ware evolution is investigated. The main contribution of our
paper is a table that summarizes our findings and clearly
shows that a more flexible type system implies more power
to carry out runtime changes but at a cost of reduced se-
curity. This table can be used by application developers to
select a suitable language for their project or by language
designers in the quest for a dynamic adaptation language.

1 Introduction

“If it’s not broken: don’t fix it.” This idiom is above all
applicable to software. Nevertheless, software evolution is
an enormous problem that makes up for more than 80% of
the cost of a software system ([23]). Even if a software sys-
tem seems to work flawlessly from a user’s point of view, it
may be difficult to maintain or adapt. Despite many mod-
ern design technologies, evolving software in order to add
new features, fix a bug or even port it to a new platform
is an extremely cumbersome process. Techniques such as
refactoring attempt to lower the cost of evolution by contin-
uously enhancing the structure of an application by struc-
tural changes such as reducing coupling.
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Live, that attempt to evolve a running system without
shutting it down, dramatically increases the complexity of
the evolution problem since there are considerably more
constraints on a running system. The updates must com-
plete in a short timeframe, must deal with the state con-
tained in the active application and consistency must be pre-
served during and after the change.

2 Problem statement

Currently more than two thousand programming lan-
guages already exist, each one different from the other.
These programming languages can be grouped in categories
with common characteristics. Some widely accepted tax-
onomies exist that define key properties of different pro-
gramming languages (such as [1, 25]).

Such taxonomies clearly show that there are no supe-
rior or inferior languages. Every language has its strengths
and weaknesses and was designed with a specific goal in
mind: Scheme for educational purposes, SQL for database
querying, C for system programming, Fortran for mathe-
matical computations and Java for portability. These goals
are clearly reflected in the design of the language as specific
design decisions have been made to ensure that the primary
goal could be optimally supported.

Evidently, many programming languages are general
purpose and can be used for purposes they were not de-
signed for. However, using these languages often implies
an additional effort from the programmer. This is what
currently happens for dynamic software evolution. Lan-
guages that were not specifically designed to support run-
time changes are used to implement adaptable software sys-
tems. Since no language support is provided for problems
specific to dynamic change, programmers typically attempt
to bypass them using a layered approach [5, 11, 20, 31, 33].
We claim that a programming language specifically de-
signed with dynamic evolution in mind would resolve some
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of the more common problems and increase the practical ap-
plicability of adaptable software by providing features such
as security and state consistency. Unfortunately, to the best
of our knowledge, no such programming language has been
developed so far.

The goal of our research is to establish the specification
of programming languages that are well suited for dynamic
software evolution. This specification can then be used (1)
by software engineers to choose an appropriate language for
developing software, and (2) by language engineers, to de-
velop a new programming language towards dynamic soft-
ware evolution.

Discussing every aspect of each programming language
is not feasable. Therefore, based on the previously men-
tioned taxonomies of programming languages, this paper
will use the type system of the language as its distinguish-
ing feature. As will be shown, many other features of a
programming language are directly related to its type sys-
tem (or lack thereof). In order to investigate the influence
of the type system on different aspects of evolution, these
aspects must be identified as well. For that purpose, a tax-
onomy developed by experienced researchers in the field of
software evolution is used [6].

The remainder of this paper is structured as follows: in
section 3 different aspects of typing in programming lan-
guages are discussed. Section 4 presents their influence on
the different dimensions of evolution (as identified in [6]).
In section 5, a real life example that illustrates the results
from our analysis is presented. We continue with related
and future work (section 6) and conclude in section 7.

3 Type systems

This paper uses the type system of a programming lan-
guage as its distinguishing feature. A type system itself,
however, is not a trivial concept. Since it is of vital impor-
tance to establish accurate terminology for the remainder
of this paper, this section introduces relevant concepts and
definitions on type systems. According to [25], the four
defining characteristics of a type system aretype binding,
type checking, type conversionsandtype strength.

3.1 Type binding and type checking

Definition 1 (Type Binding) Type binding is the process of
assigning a type to a variable. A distinction is made be-
tween static and dynamic binding depending on whether the
binding occurs at compile-time or at run-time respectively.

Definition 2 (Type Checking) Type checking is the pro-
cess that verifies whether the operands of an operator have
compatible types. When an operator is applied to an

operand of an incorrect type, a type error occurs. Depend-
ing on when the type checks occur, the term ‘static type
check’ or ‘dynamic type check’ are used.

These definitions present two distinct properties. Static
type checking does not always imply static type binding
(e.g. generics). In addition, a language could have static
binding with dynamic checking or type binding without
checking. The combination of static type binding and static
type checking is common, and is referred to by the term
static typing. This corresponds to the intuitive definition
which says that a language is statically typed if type in-
formation is present (and used) at compile time. It is not
relevant whether the type information is directly available
through annotations (such as in Java or C#) or inferred (like
in Haskell or ML). By analogy, the term dynamic typing
refers to a language that is both dynamically bound and dy-
namically checked.

A common mistake is the idea that a programming lan-
guage must be either statically or dynamically typed [7]. It
is vital to stress that static and dynamic typing arenotmutu-
ally exclusive. Many programming languages combine both
static and dynamic typing (e.g. Java, C#), other languages
are untyped (Prolog, assembly).

3.2 Type conversion

The termtype conversionis used to describe the conver-
sion of a variable from one type to another. Two differ-
ent type conversions exist: implicit conversions (coercions)
and explicit conversions (castings). The difference between
both kinds of conversions lies in the annotation: whereas
explicit conversions are always annotated, implicit conver-
sions are detected and automatically added by the program-
ming system.

3.3 Type strength

About consensus on the definition of type strength,
the renowned programming language expert Benjamin C.
Pierce stated:

I spent a few weeks trying to sort out the terminol-
ogy of strongly typed, statically typed, safe typed,
etc., and found it amazingly difficult. The usage
of these terms is so various as to render them al-
most useless.

Very often, ad hoc definitions are given that are based
on consequences of type strength. Many definitions in
literature are contradictory, others are merely orthogonal
([12, 24, 27, 17]). It is not a goal of this paper to try and
choosethe bestdefinition. However, since a terminology is
required for the remainder of this paper we take the follow-
ing definition:
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Figure 1. Weak versus Strong languages

Definition 3 (Type Strength) The terms strong and weak
typing refer to the effectiveness with which a type system
prevents type errors. A strongly typed language prevents
any operation on the wrong type of data. In weakly typed
languages there are ways to escape this restriction: coer-
cion.

For example: the Python programming language is
strongly and dynamically typed. Recently, discussions
within the community lean towards the inclusions of (op-
tional) static annotations for Python as this would enhance
the readability of the code and the compilation speed. Since
these annotations are optional, type checking is only per-
formed on these parts of the program that have been anno-
tated. The new Python would therefore be weaker typed
than the current language, since coercions would be neces-
sary to combine not annotated with annotated code. This
example shows that type strength is not entirely indepen-
dent from type binding and type checking.

Figure 1 shows the relation between type strength and
type safety. A program is considered to be type safe, if it
cannot have any type errors. The figure shows that weakly
typed systems accept unsafe programs. Strongly typed sys-
tems only accept these programs for whom it can guaran-
tee that there are no type errors. This is only a subset of
all type safe programs. An extreme example is a type sys-
tem that rejects every possible program. While evidently
safe, it is also extremely useless. This is an example of
the well known trade-off between type-safety on the one
hand and language-power on the other hand [27]. Note that
a ClassCastException is not considered to be a type
error since its effect is defined by the language specification.

3.4 Impact

One of the main reasons that the type system of a lan-
guage has a large impact on its dynamic evolution capabil-
ities is because of the strong relationship between the type
system and reflection. Reflection is the ability to inspect (in-
trospection) and modify (intercession) the high-level struc-
ture of a program at runtime. Reflection therefore implies
the ability to generate new programs at runtime [18].

To realize full reflection, all system entities must be
available as first-class entities which can be inspected or
modified (in OO languages these entities are methods and
objects). However, the reification of a runtime structure into
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Figure 2. Prog. languages and their typing

a first-class entity requires that such a structure exists. This
is only the case in the presence of dynamic typing.

Dynamic typing does not prevent the presence of a static
type system. Nevertheless, static typing and reflection are
two properties that do hinder each other. The first reason is
that static typing is based on deduction of universal proper-
ties about a programs behavior before it is run. Reflection
strongly complicates this, since it can be used to alter behav-
ior based on run-time input, which is not available for prior
analysis1[3]. A second explanation of the clash between a
static type system and reflection can be found in the fact that
a static type system adds constraints that forbid certain types
of changes to occur (all changes that violate type safety).
Reflective systems for purely dynamically typed languages
(such as Smalltalk) are therefore often more powerful than
those for statically typed languages. It is important to re-
mark that there is no fundamental technical issue in imple-
menting reflective capabilities that violate type safety for
statically typed languages, but that such an implementation
would be in fundamental violation of the language itself (for
an example: see section 4.3.3).

Figure 2 shows an overview of a few well known pro-
gramming languages and their typing. There is no clear sep-
aration between strongly and weakly typed languages. The
further away from the origin of the graph, the more flexi-
ble and powerful a language becomes. Purely dynamically
typed languages are more flexible than languages with both
static and dynamic typing, since their reflection mecha-
nisms are not bound by language restrictions that are caused
by their static typing. Hence, their location at the very top
of the figure. The power of languages without static typing
also implies a danger. Therefore, when safety is an issue,
safer languages are desired which are located closer to the
origin. As runtime type information is required at runtime

1This is also why reflection is ignored in most type formalisms.
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in order to achieve full reflection, it can only be provided
by these languages that are either dynamically, or both stat-
ically and dynamically typed.

4 Evolution Taxonomy

Directly analyzing the applicability of all different pro-
gramming languages to runtime software evolution is not
only unfeasible, it would also very quickly result in ide-
ological discussions of specific language features. In this
paper, we take the reverse approach and start from an exist-
ing taxonomy on evolution in which all different aspects of
dynamic software evolution are treated. For each of these
aspects we examine how specific language features (such
as their type system or reflective capabilities) influence the
ability of a language to deal with the evolution property un-
der consideration.

As a base for discussion we take the taxonomy by
renowned researchers in the field of software evolution [6].
Their taxonomy classifies different aspects of evolution in
four dimensions: the object of change (where), change sup-
port from the underlying system (how), properties of the
system under consideration (what) and temporal aspects
(when). In addition, we will also touch very briefly on a
fifth dimension: the purpose of change (why).

4.1 Purpose (why)

Most papers in literature identify four major types of
maintenance activities: perfective, adaptive, corrective and
preventive [16]. A more extensive taxonomy of mainte-
nance activities based on their purpose is given in [8] in
which Chapin et al. identify twelve different types of evo-
lution. In general, the reason why one would attempt a run-
time change to a running program is independent from the
technology that is used to achieve this goal. Nevertheless,
the better a technology supports runtime software evolution,
the more likely it is that such technology will actually be
used.

In statically typed languages, performing a runtime
change is generally quite difficult, since one must uphold
guarantees of the language that no type errors can occur in
the process of a change. While certainly not impossible,
such an attempt is non-trivial and requires a lot of prepara-
tion. It is very unlikely that one would take the effort to do
so unless it can not be avoided.

For some purely dynamically typed languages however,
certain forms of dynamic modification can be executed with
relative ease. Thebecome operator in Smalltalk allows
switching two objects, is easy to use and has global impact
on the active image. In addition, interactive development
environments (such as the Smalltalk browser, but also some
Prolog development environments) allow modifications so

easily that runtime changes are truly incorporated in the de-
velopment process: programs are constructed through in-
cremental change. This process is essentially part of soft-
ware development and differs from true live updates since
many important problems (such as state transfer) are not ad-
dressed.

4.2 Temporal Aspects (when)

Thewhenquestion addresses temporal properties of soft-
ware maintenance tasks such as the moment when the
change is executed, the change frequency and how different
versions of the same software are treated and maintained.

4.2.1 Time of Change

Depending on the programming language and development
environment being used, changes can be executed in differ-
ent phases of the software development cycle. Changes can
either be made to the software offline (i.e. while the soft-
ware is not active) or online (during its execution).

Offline changes Offline changes are popular because of
their ease of implementation: there is no predetermined
timeframe in the change must complete, both testing and
verification of the change is possible and a variety of in-
formation (such as the source code) is available. It there-
fore makes sense to prepare an online update using offline
changes wherever possible [32, 9, 28]. One example of such
preparation is the addition of getter methods to facilitate
state extraction at runtime. Although offline changes can
obviously be applied to any program, regardless the pro-
gramming language used for the implementation, code in-
strumentation is much more common with statically typed
languages. There are two reasons for this phenomenon:

Information Availability: Code instrumentation embeds
information known at design time into the code so that
it can be used at runtime. However, for purely dy-
namically typed languages, hardly any information is
available that can not be easily derived at runtime. A
static type system provides the user with more infor-
mation that can be used as a base for analysis or can
be included in the code. For instance, in [32], code is
instrumented with information on corresponding struc-
tures between different versions, which is used by the
state transfer algorithm. Without the offline instrumen-
tation, such information could never have been derived
at runtime.

Less powerful reflection: Purely dynamically typed lan-
guages often have a more advanced reflective system
which eliminates the use for some forms of code in-
strumentation (such as the addition of getter methods
to extract state information).
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Online changes Generally speaking, static and strong
typing hinder online changes, since they enforce a num-
ber of rules that prohibit certain changes. The removal of
a method from a type, for instance, will not be allowed by
the type system. To achieve this result, a new type must
be created (identical to the old type except for the removed
method) and all old objects would need to be converted to
their counterpart from the new type. This is clearly more
complex than direct type modification such as those allowed
by the reflection mechanisms of Smalltalk.

For this lack of flexibility, the type system offers in-
creased safety in return. However, if not all changes are
type-safe (and this is often the case in a typical evolution
scenario), the type system only gets in the way. In these
cases, correctness must be verified using invariant check-
ers, which can be implemented regardless of the language
used. More information on safety is given in section 4.4.4.

4.2.2 Change history

A change history of a software system refers to the his-
tory of all changes that have been made to the software.
Static versioning implies that different versions can coexist
at compile time or at load-time, but cannot exist simulta-
neously at runtime. It is clear that static versioning can be
supported for any language. All that is required is a ver-
sioning system that keeps the sources of different versions
available (such as CVS or subversion).

Full versioning implies that multiple versions can coex-
ist at runtime. This is a desirable feature since it allows for
lazy conversion: the new implementation is used to con-
struct new instances whereas the old instances remain un-
changed and are gradually removed from the system after
their task has completed. In addition, the ability to have
different versions in memory allows for an easy implemen-
tation of a rollback functionality. If only one version can be
present at a given time, changes are by definition destruc-
tive, and rollback is harder to implement.

While full versioning is possible for both dynamically
and statically typed languages, it is more naturally sup-
ported for the latter, since both versions are considered to
be different types. Nothing prohibits such duplication with
purely dynamically typed languages (Smalltalk for instance
even allows storage of source code in its classes). How-
ever, this construct would sacrifice many of the advantages
of purely dynamically typed languages such as type modi-
fication through its reflective system.

4.2.3 Change Frequency

The change frequency is inversely proportional to the effort
required to achieve a runtime change. Since this effort is
in general lower for weakly and purely dynamically typed

languages, change frequency will be higher for these lan-
guages. This process is in part self-sustaining: if changes
are more frequent, they tend to be smaller and easier to im-
plement. This in turn decreases the barrier for their use. In
practice this is confirmed by iterative development environ-
ments for languages such as CLOS and Smalltalk.

For statically typed languages, these iterative develop-
ment environments are virtually non-existent. Live updates,
even without any proof of their correctness, such as is the
case of Smalltalk) are difficult to achieve, and therefore in-
tentional. Using the terminology of [6], live updates for
statically typed languages are almost always periodical as
opposed to the continuous nature of dynamic adaptations in
languages without a static type system.

4.3 Object Of Change (where)

The object of change describes thewheredimension in
the taxonomy of software evolution, as a change is always
applied to a specific target. In this section, we assess how
the programming language influences the size of the small-
est unit of adaptation as well as the impact of the change
and its propagation in the rest of the system.

4.3.1 Anticipation

Anticipated changes are easier to tackle at runtime than
unanticipated changes. The more changes a piece of soft-
ware anticipates, the better it is armed to deal with evolution
later on in its life-cycle. It is clear however, that at the appli-
cation level, not every possible change can be anticipated.

The main impact of anticipation is that it indicates what
portions of the software can easily be changed. The only
goal of techniques such as code instrumentation as a prepa-
ration for a live update is to increase this portion. The used
language and runtime infrastructure have a large impact on
anticipation, since all concepts that are modeled as first
class entities can be changed at runtime without difficulty.
For instance, a message is a first-class entity in Smalltalk
and as such, method invocations can be rewired with ease.
This would be much harder in Java, where the same concept
is not treated as a first-class entity. Both meta-protocols and
reflection are techniques to anticipate a number of changes
at the language level and systems that provide these options
can be considered as extensible programming languages.

In theory, if every concept of the language is fully reified,
a language can be constructed that anticipates every possi-
ble change and is therefore ideal for dynamically updateable
software. Whether the construction of such a language is a
realistic undertaking remains subject for debate. However,
it is clear that there is a huge difference between different
programming languages regarding their support for antici-
pation. The relation of this support with their type system
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is less obvious. Languages without a static type system en-
force less rules and therefore allow easier implementation
of many types of unanticipated changes. As such, purely
dynamically typed languages can be considered more antic-
ipative than statically typed languages.

4.3.2 Artifact

Software consists of a number of inter-related artifacts such
as source code, design models, documentation and test-
suites. Dynamic software evolution is exclusively con-
cerned with dynamic artifacts (used at runtime) such as
modules, functions and objects. While it is clear that co-
evolution of the other artifacts is a desirable feature, the
evolution of static artifacts is outside the scope of this pa-
per. Some aspects of dynamic evolution (such as code-
instrumentation) should be explicitly excluded from static
artifacts, since they do not represent a property of a given
version, but are directly related to the evolution process it-
self. They should therefore be transparent to the user.

4.3.3 Granularity

The degree of granularity defines the minimal size of the
unit of replacement. The finer this granularity is, the more
difficult it is to ensure consistency. After all, coarse grained
components typically contain many tightly-coupled objects
which are then replaced in group. Fine grained changes will
need to deal with these strong interrelations.

Fine grained changes (within a type) are typically inhib-
ited by statically typed languages, since a large number of
changes are forbidden by these languages. With purely dy-
namically typed languages, there is no static type that an
object must correspond to. Hence, a type can easily be
changed without the need to create a new type in the pro-
cess. The powerful reflective mechanisms often found in
purely dynamically typed languages proof this fact. While
it would be technically feasible to develop an equally pow-
erful reflective API for statically typed languages, the lan-
guage definition forbids all modifications that could violate
type safety, which include most changes to a type. For in-
stance, it is perfectly possible to implement a Java API that
would allow the removal of methods from a Java class at
runtime similar to the reflective system found in Smalltalk.
If a method is removed and subsequently used, in Smalltalk,
a MessageNotUnderStood exception is thrown. How-
ever, the programmer is aware that such behavior can occur
and the language specification dictates that such an event
may occur. In Java, such operation breaks the semantics
of the programming language, since Java ensures that once
the type of an object is known, all its methods can be used.
Two options remain: either check dynamically that the re-
moval of the method can never result in an error or dump
the guarantee. The former option, if at all possible, would

be extremely expensive to do at runtime. The latter option
implies removing static type checking from the language,
which would result in a Java-syntactic Smalltalk variant.

The main advantage of fine grained changes is that they
usually do not require the transfer of complex state. Stat-
ically typed languages can emulate fine-grained changes
with coarse grained changes (creating a new type which is
identical to the old type except for the fine grained change).
However, this is pointless, since the state-preserving fea-
tures of fine grained changes (their primary advantage) are
no longer applicable.

4.3.4 Change Impact

The impact of a change describes to what extend changes,
which are applied to a software entity, are contained within
the boundaries of that entity. Automatically determining
whether a change has local or system wide impact is not al-
ways trivial. Static typing clearly helps in the localization
of affected portions of the system since type information is
the main source of impact-analysis. A clear example of the
correlation of the type system and its ability to determine
change impact can be found in the context of refactoring
[13]. For statically typed languages (e.g. Java) many refac-
torings (such as a method rename) can be automated com-
pletely. This is impossible for pure dynamically typed lan-
guages since they do not provide the means to identify the
target of a method invocation or variable access at design
time. For instance, the type of the parameters of a method
invocation can not be used to identify the correct method.
As such, tool support is therefore limited to an exhaustive
listing of all possible targets from which the developer must
make his selection.

Approaches, such as execution traces [4], can provide
additional information and narrow down the set of possibly
affected locations. Nevertheless, such techniques remain
limited with respect to static type information. Also note
that the information of a static type system is rarely com-
plete. Most statically typed languages (such as Java, C#
and Eiffel) rely on dynamic typing to implement concepts
as polymorphism and late binding.

4.3.5 Change Propagation

For dynamic software evolution, languages or methodolo-
gies that limit the propagation of a change are desirable.
[22] shows that the impact of a change and the effort to ex-
ecute it are directly proportional: large sets of affected soft-
ware entities make the update slower and more complex.
The influence of the typing mechanism on change propaga-
tion is twofold:

1. Static typing prohibits direct modification of types at
runtime. Hence, changes often result in the conver-
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sion of instances from the old to the new type. It is
uncommon that this conversion maintains the identity
of the instance. The change therefore propagates to
all structures that contain references to the modified
instance, resulting in a cascading effect which causes
a seemingly local change to have global impact. For
purely dynamically typed languages, direct changes to
the type are possible. Such changes often preserve ob-
ject identity and therefore change propagation is less
likely.

2. Coexistence of different versions increases localiza-
tion of a change since lazy object migration is possible:
objects are not actively replaced but are gradually re-
moved from the system when they are no longer used.
As mentioned in 4.2.2, this is better supported by static
type systems.

The popularity of component-based systems for dynamic
updating is caused by its excellent characteristics concern-
ing change impact and change propagation. A component
is considered to be a loosely coupled and self-sufficient en-
tity. As such, changes within a component remain within
the boundaries of the component. In most cases, a lookup
mechanism separates the identity of a component from an
actual instance. Methodologies such as component based
software engineering or aspect oriented programming stim-
ulate the separation of concerns. They reduce coupling,
limit change propagation and thus increase the ability to
perform runtime adaptations.

4.4 System properties (what)

This dimension of dynamic software evolution refers to
a number of system properties of the software system that is
being changed and the underlying platform or middleware.
It addresses what kind of changes are allowed.

4.4.1 Availability

The goal of dynamic evolution is to minimize downtime.
Ideally, the application remains available during the entire
adaptation process. In some cases short downtimes are ac-
ceptable provided that the new version can continue where
the old version left of (i.e. the state is transferred).

Continuous availability of the entire application is not
possible in the presence of state transfer. In order to trans-
fer state, the entity under consideration must be placed in an
inactive (quiescent) state [15]. Therefore, the application is
partly or completely unavailable (depending on the impact
of the change) for the duration of the adaptation. The goal
is to minimize both the portion of the application that is
inactive and the duration of the update. These two issues
are interrelated and are coupled to the granularity: a coarse

grained unit of change tends to disable a larger portion of
the application for a longer period of time. However, re-
placing a larger unit is much easier (and often safer), since
many tightly coupled constructs are replaced together.

Whenever state transfer is not required, an uninterrupted
service can be achieved. Direct type modifications (for ex-
ample adding a method in a Smalltalk program) do not af-
fect running programs and are fully transparent to the user
of the application. For statically typed languages, the lazy
update approach can be used: since no active entity is re-
placed, nothing needs to be deactivated. A major drawback
of this technique is that there is no guarantee that the update
terminates within a reasonable period of time.

4.4.2 Activeness

In literature [21], a distinction is made between reactive and
proactive systems. Whereas changes in a reactive system
are driven by an external factor, proactive systems moni-
tor the state of their own execution with sensors and adapt
themselves according to a given policy. Since such a policy
is always intentionally implemented in advance, proactive
systems are by definition anticipated.

Unanticipated changes are always initiated on request
and therefore reactive. The request is typically directed to
the middleware that executes the change. Powerful reflec-
tive systems ease the implementation of a reactive environ-
ment since they provide an implicit maintenance interface
to the application. However, limitations of the environment
can be overcome with code instrumentation or manual im-
plementation. In general there is no direct relation with the
type system of the language used.

4.4.3 Openness

Software systems are considered to be open if they are
specifically built to allow for extensions. With respect to
live updates, there is a strong relation between openness
and anticipation. Applications are, by definition, closed to-
wards unanticipated changes and open towards anticipated
changes. As such, the argumentation given under section
4.3.1 is valid here as well: purely dynamically typed lan-
guages are more open due to their powerful reflection mech-
anism which allow inspection and modification of the lan-
guage at a very basic level. Additionally, we can say that
weakly typed languages will be more open than strongly
typed languages.

4.4.4 Safety

A system featuresstatic safetyif it is able to ensure at com-
pile time that the system will not behave erroneously at run-
time. A system providesdynamic safetyif it contains pro-
visions that prevent or restrict unwanted runtime behavior.
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The required change support mechanisms are directly influ-
enced by the desired kind and degree of safety.

Static typing provides a certain degree of safety: the sys-
tem can verify that both the old and the new version are
type-safe, and additional analysis can check for type com-
patibility issues between different versions. It allows, to a
certain degree, to verify compatibility at design time or at
load time. Without static typing, this is not possible.

At runtime, verification of compatibility can also be per-
formed using techniques as invariant-checking (evaluation
of a function that checks the compatibility between the new
version and the running system). Such techniques are diffi-
cult and time consuming to implement. However, this is not
related to the type system since the implementation of this
extra behavior is required anyway. Static type systems only
detect type errors, which is clearly insufficient for a typical
dynamic adaptation scenario. Many additional conditions
must be met for the update to be a success (e.g. access
control to initiate the update, consistency checks between
versions after a state transfer).

4.5 Change support (how)

The final dimension of the evolution-taxonomy describes
the change process itself. The actual technique used to ac-
complish the update is classified according to a number of
orthogonal characteristics, some of which are influenced by
the programming language used.

4.5.1 Degree of automation

In general, it is impossible to achieve full automation when
state transfer is involved: it is impossible to correctly iden-
tify semantically equivalent structures between different
versions of a component since not all semantic information
is contained in source code. A typical example is the rep-
resentation of a triangle. In versionn, three points may
be used while versionn + 1 uses two edges and an angle.
State transfer remains in essence an interactive and at best
a semi-automatic process. Nevertheless, tool support can
be developed to assist the programmer with this task ([32]).
Such tools are more likely to be successful if they have type
information at their disposal2.

When no state transfer is required, a powerful meta-level
protocol or reflective system could allow fully automatic ex-
ecution of declarative change-specifications such as the ad-
dition or removal of a method. This is an argument in favor
of purely dynamically typed languages: it is harder (albeit
not impossible) to implement such a system on statically
typed languages.

2The same statement is valid for other forms of evolution, such as refac-
toring.

4.5.2 Degree of formality

A change process can be described in various levels of for-
mality. Formal proofs of correctness are extremely useful
in the context of dynamic software evolution. After all, an
update is worth nothing if not executed correctly. While no
such proofs known to the authors are of wide practical ap-
plicability, it is not impossible that such formalism could
ever be constructed. Although in general statically typed
languages are better suited for formal descriptions, other
formalisms exist (e.g. graph transformations: see [19]) that
do not depend on the type system. Therefore, the degree
of formality is not directly related to the type system of the
programming language used.

4.5.3 Change type

While structural changesare said to be behavioral preserv-
ing, behavioral changesare said to be changing the behav-
ior of the application. As structural changes are mostly used
to ease a behavioral change (e.g. refactorings), live updates
can be of both kinds. Because statically typed languages
have more structural information, they will be more suited
for structural changes then dynamically typed languages.
The impact of the typing on behavioral changes is non exis-
tent.

4.6 Overview

Table 1 summarizes the findings of this paper. For each
of the dimensions of evolution, the impact of the type sys-
tem is shown. For brevity, dimensions that were not influ-
enced by the typing, were omitted.

In the table we distinguish between six different typing
combinations ranging from static/strong to dynamic/weak.
The overview confirms the expectations from section 3.4
and demonstrates that more flexible typing corresponds
with increased power to carry out the changes. However,
this flexibility comes at a cost: reduced impact estimation,
lower safety and more difficult formalizations.

This table can be used in combination with the language-
overview from the section 3.4 (see figure 2) to assist a de-
veloper with the selection of a programming language.

5 Example

To illustrate the influence of typing on evolution, con-
sider the following real-life example. Imagine a complex
hierarchy of exceptions and a framework with classes that
throw some of those exceptions. The software evolves, and
at a certain time a new exception is added to the hierarchy
and thrown by the classes from the framework. Static type
checking applied to exceptions implies that every thrown
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Group Dimension Section Static Both Dynamic
Weak Strong Weak Strong Weak Strong

Temporal (when) Time of change 4.2.1
Offline changes ++ ++ ++ ++ + +
Online changes - - - - +/- - ++ +

Change history 4.2.2 ++ + ++ + + +-
Change frequency 4.2.3 - - - - - - ++ +

Object of change (where) Anticipation 4.3.1 - - +/- +/- + +
Granularity 4.3.3

Coarse grained ++ ++ ++ ++ + +
Fine grained - - - - ++ ++

Impact 4.3.4 + ++ +- + - - -
Change propagation 4.3.5 +/- +/- +/- +/- ++ +

System properties (what) Availability 4.4.1 - - +/- +/- + +
Openness 4.4.3 +/- - + +/- ++ +
Safety 4.4.4 +/- + +/- + - - -

Change support (how) Degree of automation 4.5.1 - - +/- +/- +/- +/-
Degree of formality 4.5.2 + ++ + ++ - +/-
Change type 4.5.3 + + + + +/- +/-

Table 1. Type impact on software evolution

exception is either caught within the method that throws the
exception (which is not always desirable) or declared in the
method signature. The latter option causes all subclasses
of the modified class to declare the new exception. With
statically typed languages, people often avoid these prob-
lems by throwing generalized exception classes (throws
Exception ) which are later cast to a more specific ex-
ception. The cause of this issue is the type system: with
dynamically typed languages these problems do not arise
since thrown exceptions do not need to be declared. There-
fore, some statically typed languages, such as Java, provide
unchecked exceptionsthat literally disables type checking
on a number of exceptions. This example clearly shows that
there is certainly an influence of typing on software evolu-
tion.

6 Related and future work

So far, the relation between programming language fea-
tures and dynamic evolution has not been systematically
investigated. Overviews and comparisons of different sys-
tems for dynamic adaptation do exist however, and can be
found in [14, 26, 30]. While no programming language
is specifically designed with dynamic evolution in mind,
Hicks modified the Popcorn programming language in or-
der to provide better support for online evolution ([14]).
To achieve this goal, more language constructs were rei-
fied into a first-class entity so that they could be inspected
and/or modified.

This paper primarily dealt with the impact of the type
system. Future work includes an analysis of other lan-
guage properties that directly or indirectly influence dy-
namic adaptations. The majority of programming languages
uses lexical scoping since this is more intuitive than dy-
namic scoping. However, [10] shows that dynamic scoping
is more flexible and possibly better suited for evolution. An-

other second important characteristic is the programming
paradigm: functional languages do not require state trans-
fer, prototype based languages are flexible and have many
possibilities for evolution as they have no classes. Here too,
flexibility comes at the cost of reduced encapsulation and
security. And while aspect oriented programming aims to
provide clear separation of concerns, [29] shows that result-
ing code is not necessarily loosely coupled.

The execution system of a program has impact on evo-
lution properties as well. Interpreted languages are easier
to change at runtime than compiled languages. Languages
which are compiled to intermediary code (such as Java or
C#) often use Class loading techniques to overcome certain
issues. While successful to some extend, they are clearly
more complex than their interpreted counterparts [9, 28].

A final language feature that has possible implications on
evolution is concurrency. Two major implementations exist
to avoid data clashes in multi-threaded systems: the shared
data and the actor-model approach. In [2], the authors claim
that the actor-model approach is better suited for evolution
since concurrency functionality is grouped in one place.

7 Conclusion

Live updates (evolving a program without shutting it
down) is a complex and hot topic in software research. So
far, no programming language has been designed with dy-
namic software evolution in mind. Therefore, current tech-
niques all require significant additional effort from the de-
signer and the programmer of the software to compensate
for the lack of language support.

The primary contribution of this paper is that it thor-
oughly investigates the relation between a programming
language’s type system and its suitability for dynamic adap-
tation. A taxonomy from renowned experts in the field of
software evolution [6] is used as the starting point for our
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analysis. Our findings resulted in a concise table that clearly
summarizes the relation between a type system and evolu-
tion. This table shows that the more flexible the type sys-
tem, the more power is available to carry out actual changes.
It also shows the that these powers come at a cost: reduced
security. This table can either be used as a starting point for
language designers that want to develop a language for dy-
namic adaptation, or by an application developer to select a
suitable language according to his needs.
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